[ StratOS @ 11.09.2005. 19:51 ] @
Given is a square (the stripe-filled polygon), whoose edges have a length of "a" each. A circle with the midpoint M2 has three points in common with the square-edges:



CP has a length of a/4 and M1 is the midpoint of the squares left edge. What you have to do:

Calculate x (the length of PQ) in dependency of the squares edge-length "a".
[ malada @ 12.09.2005. 05:37 ] @
neka su A,B,B1 kao na slici.



Tada je <BCQ=<BM1P kao periferni uglovi nad BQ
<M1BC=<M1QC kao per. nad MC
=> trougao M1BP~CPQ
(x/M1P)=(CP/PB)
M1P se moze izracunati kao hipotenuza trougla M1B1P (jeste da nije korektno ali...) i odatle se dobija x

[Ovu poruku je menjao malada dana 12.09.2005. u 06:40 GMT+1]