[ edisnp @ 29.01.2011. 17:11 ] @
Imam problema oko resenja jednog zadatka treba da izracunam povrsinu
torugla koju je ogranicen ordinatom i pravama y=|x+4|-2 i 2x+2y-13=0.
Kad odredima pravu 2x+2y-13=0 prvo nadjem vrednosti za x i za y i posle kad
odredjujem pravu y=|x+4|-2 uzmem vrednost za x>0 dobijamo y=x+2 , a za
x<0 dobijam y=-x-6 i nikako mi ne ispada dobro i zbunjuje me imamo ovu apsolutnu
vrednost i valjda zbog toga dobijamo dve prave od koje jedna odredjuje trougao a druga ne
odredjuje sve u svemu ne ide mi da odredim povrsinu ovog trougla.
[ SrdjanR271 @ 29.01.2011. 18:49 ] @
Valjda je ovako?




[Ovu poruku je menjao SrdjanR271 dana 29.01.2011. u 20:00 GMT+1]


[Ovu poruku je menjao SrdjanR271 dana 29.01.2011. u 20:04 GMT+1]
[ edisnp @ 29.01.2011. 20:04 ] @
Zaista nemam reci hvala puno!
[ atomant @ 29.01.2011. 21:43 ] @
Ovo je dvojni integral, samo sto je ovde napisan samo deo pred kraj resavanja.


[ SrdjanR271 @ 29.01.2011. 22:24 ] @
Citat:
atomant: Ovo je dvojni integral, samo sto je ovde napisan samo deo pred kraj resavanja.




Moze i kao dvojni.
Ovde je bas jednostruki. Ima neka "teorema" za jednostruki :

Neka je gornja kriva i donja

Povrsina koja se dobija kao presek ove dve krive od a do b jednaka je



A to je posledica Fubinijeve teoreme



Ovako je jednostavnije za koriscenje kod ovakvih "prostih" grafika.

Na slican nacin se moze koristiti dvojni za racunanje zapremine


gde je z1 donja povrs a z2 gornja povrs
A ovaj dvojni je po oblasti Dxy



[Ovu poruku je menjao SrdjanR271 dana 30.01.2011. u 00:02 GMT+1]
[ miki069 @ 01.02.2011. 01:26 ] @
Nije potrebno koristiti intergrale kada nijedna linija nije kriva.
Ovo je najobičniji trougao.
Stranica na Y osi je dužine 13/2 - 2 = 9/2.
Visina na nju je 9/4.
Površina je 1/2*stranica*visina =1/2*9/2*9/4 = 81/16.
[ Fermion @ 01.02.2011. 13:00 ] @
Da, ovo se i bez integrala lako uradi, recimo determinantama.

Najpre skiciramo grafik i odredimo koje su jednačine stranica trougla. Onda nađemo tačke preseka (te tri jednačine se grupišu u tri sistema po dve, i presečne tačke su zapravo rešenja takvog sistema).

Tražena površina je onda:


[ Sini82 @ 01.02.2011. 17:02 ] @
Možeš i ovako:

- nađeš presjek pravih i sa y osom; to su tačke i ;
- nađeš presječnu tačku tih pravih; to je tačka ;
- izračunaš površinu trougla pomoću formule iz analitičke geometrije, dobiješ .
[ edisnp @ 01.02.2011. 19:10 ] @
ja sam to takodje uradio kao sto je miki069 pokazao tj.
(4.5*9/4)/2=P
=405/80
81/16