[ KitanovV @ 27.06.2019. 00:41 ] @
Da li moze neko da mi uradi ovaj zadatak: Za koje vrednosti realnog parametra a jednacina sin6x + cos6x = a(sin4x + cos4x) ima resenje? |
[ KitanovV @ 27.06.2019. 00:41 ] @
[ mjanjic @ 27.06.2019. 02:38 ] @
(sinX)^4 = (3/8) - (1/2)cos(2X) + (1/8)cos(4X)
(cosX)^4 = (3/8) + (1/2)cos(2X) + (1/8)cos(4X) (sinX)^6 = 5/16 - (15/32)cos(2X) + (6/32)cos(4X) - (1/32)cos(6X) (cosX)^6 = 5/16 + (15/32)cos(2X) + (6/32)cos(4X) + (1/32)cos(6X) (sinX)^6 + (cosX)^6 = 5/8 + (3/8)cos(4X) (sinX)^4 + (cosX)^4 = 6/8 + (2/8)cos(4X) 5/8 + (3/8)cos(4X) = a*(6/8 + (2/8)cos(4X)) 5 + 3cos(4X) = a*(6 + 2cos(4X)) (3-2a)cos(4X) = 6a-5 => cos(4X) = (6a-5)/(3-2a) -1 <= (6a-5)/(3-2a) <=1 1/2 <= a <= 1 Ne znam samo da li ima nekih dodatnih uslova, sad sam poprilično umoram, pa pokušaj sam da proveriš, vidim da ne sme biti a=3/2, ali ta vrednost je izvan dobijenog intervala. Copyright (C) 2001-2025 by www.elitesecurity.org. All rights reserved.
|